Table 5 Classification accuracy of the proposed YOLOv5s-CS model and YOLOv5s model for training the garbage dataset.

From: A real-time rural domestic garbage detection algorithm with an improved YOLOv5s network model

 

Target

YOLOv5s

YOLOv5s-CS

Precision

Recall

mAP@0.5

Precision

Recall

mAP@0.5

Domestic garbage

Apple core

0.991

0.998

0.997

0.99

0.998

0.997

Toothbrush

0.891

0.779

0.86

0.985

0.881

0.950

Vegetable leaf

0.984

0.919

0.974

0.999

0.883

0.987

Watermelon peel

0.746

0.798

0.809

0.911

0.771

0.826

Hazardous garbage

Battery

0.933

0.854

0.891

0.94

0.894

0.847

Pencil

0.875

0.872

0.875

0.972

0.92

0.992

Button battery

0.952

0.941

0.967

0.98

0.961

0.992

Mobile phone

0.955

0.809

0.944

0.987

0.977

0.976

Recyclable garbage

Book

0.869

0.792

0.852

0.923

0.835

0.886

Trousers

0.966

0.999

0.995

0.982

0.973

0.935

T-shirt

0.969

0.942

0.969

0.981

0.982

0.995

Other garbage

Capsule

0.924

0.86

0.922

0.986

0.989

0.975

Remote control

0.782

0.923

0.887

0.999

0.962

0.928