Table 4 Comparison of experimental results of different 3D-CNN networks.

From: Improved 3D-ResNet sign language recognition algorithm with enhanced hand features

Method

FLOPs (G)

Parm (M)

Top1 (%)

Top2 (%)

Top3 (%)

Top4 (%)

Top5 (%)

AVG (%)

C3D

32.998

78.405

78.34

88.44

91.70

93.72

94.80

89.40

C3D + local

98.961

145.514

87.42

94.08

96.30

97.40

98.20

94.68

3D-ResNet10

5.654

14.445

76.82

86.04

90.30

92.34

93.20

87.74

3D-ResNet10 + local

16.961

14.496

84.84

92.46

95.14

96.68

97.62

93.35

3D-ResNet34

12.696

63.548

76.58

83.62

86.24

88.10

89.26

84.76

3D-ResNet34 + local

38.088

63.599

87.90

94.04

96.14

97.30

97.84

94.64

P3D

4.192

25.073

77.50

88.74

93.32

95.10

96.08

90.15

P3D + local

12.577

25.278

72.32

83.18

87.94

90.26

92.38

85.22

3D-ResNet18 (Baseline)

8.308

33.246

81.06

88.98

92.22

94.00

94.78

90.21

3D-ResNet18 + local

24.924

33.297

88.66

94.30

96.42

97.44

98.02

94.97

  1. Experimental results of our method are in bold.Â