Table 1 Equations & ranges of dimensionless numbers effective on SPP performance.

From: Experimental evaluation of the effect of positioning and operating parameters on the performance of a surface-piercing propeller

Dimensional number

Equation and range

 

Reynolds

\({\mathit{Re}}_{v}=\frac{V.{c}_{0.7}}{\nu }\sqrt{1+(\frac{0.7\pi }{J}{)}^{2}}\ge 5\times 1{0}^{5}\)

\({\mathit{Re}}_{n}=\frac{5n{D}^{2}({A}_{E}/{A}_{O})}{\nu Z}\ge 5\times 1{0}^{5}\)

Weber

\({W}_{nD}=\frac{V}{\sqrt{ \sigma / \rho D} }\ge 200\)

\({W}_{n}=\sqrt{\frac{\rho {n}^{2}{D}^{3}}{\sigma }}\ge 180\)

\({{W}_{n}}{^{\prime}}=\sqrt{\frac{\rho {n}^{2}{D}^{3}I}{\sigma }}\ge 270\)

Froude

\(F{r}_{n}=n\sqrt{\frac{D}{g}} \ge 3-3.5\)

\({Fr}_{n{h}_{s}}=\frac{V}{\sqrt{g{h}_{s}}}\ge 4\)

\({Fr}_{nD}=\frac{V}{\sqrt{gD}}\ge 4\)