Table 1 Equations & ranges of dimensionless numbers effective on SPP performance.
Dimensional number | Equation and range | |||
|---|---|---|---|---|
Reynolds | \({\mathit{Re}}_{v}=\frac{V.{c}_{0.7}}{\nu }\sqrt{1+(\frac{0.7\pi }{J}{)}^{2}}\ge 5\times 1{0}^{5}\) | \({\mathit{Re}}_{n}=\frac{5n{D}^{2}({A}_{E}/{A}_{O})}{\nu Z}\ge 5\times 1{0}^{5}\) | ||
Weber | \({W}_{nD}=\frac{V}{\sqrt{ \sigma / \rho D} }\ge 200\) | \({W}_{n}=\sqrt{\frac{\rho {n}^{2}{D}^{3}}{\sigma }}\ge 180\) | \({{W}_{n}}{^{\prime}}=\sqrt{\frac{\rho {n}^{2}{D}^{3}I}{\sigma }}\ge 270\) | |
Froude | \(F{r}_{n}=n\sqrt{\frac{D}{g}} \ge 3-3.5\) | \({Fr}_{n{h}_{s}}=\frac{V}{\sqrt{g{h}_{s}}}\ge 4\) | \({Fr}_{nD}=\frac{V}{\sqrt{gD}}\ge 4\) | |