Table 2 Selection of hyperparameters for the DT, RF, KNN, SVM, GB, ET, AB and ANN models.

From: Artificial intelligence used to diagnose osteoporosis from risk factors in clinical data and proposing sports protocols

Models

Selected hyperparameter for the men model to predict healthy, osteopenia, and OP

Selected hyperparameter for the women model to predict healthy, osteopenia, and OP

Selected hyperparameter for the men model to propose sports protocols

Selected hyperparameter for the women model to propose sports protocols

DT

max_depth = 4, max_leaf_nodes = 6

max_depth = 5, max_leaf_nodes = 7

max_depth = 3, max_leaf_nodes = 7

max_depth = 6, max_leaf_nodes = 12

RF

max_depth = 7, random_state = 3, n_estimators = 19

max_depth = 10, random_state = 17, n_estimators = 9

max_depth = 7, random_state = 14, n_estimators = 13

max_depth = 13, random_state = 7, n_estimators = 16

KNN

n_neighbors = 3

n_neighbors = 10

n_neighbors = 2

n_neighbors = 4

SVM

C = 17, kernel = 'rbf', gamma = 'scale', coef0 = 0.0, shrinking = True, probability = True, tol = 0.001, class_weight = None, verbose = False, decision_function_shape = 'ovr', break_ties = False, random_state = 0

C = 28, kernel = 'rbf', gamma = 'scale', coef0 = 0.0, shrinking = True, probability = True, tol = 0.001, class_weight = None, verbose = False, decision_function_shape = 'ovr', break_ties = False, random_state = 0

C = 15, kernel = 'rbf', gamma = 'scale', coef0 = 0.0, shrinking = True, probability = True, tol = 0.001, class_weight = None, verbose = False, decision_function_shape = 'ovr', break_ties = False, random_state = 0

C = 37, kernel = 'rbf', gamma = 'scale', coef0 = 0.0, shrinking = True, probability = True, tol = 0.001, class_weight = None, verbose = False, decision_function_shape = 'ovr', break_ties = False, random_state = 0

GB

max_depth = 22, min_samples_split = 8, min_samples_leaf = 14, max_features = 2

max_depth = 3, min_samples_split = 9, min_samples_leaf = 6, max_features = 5

max_depth = 13, min_samples_split = 14, min_samples_leaf = 12

max_depth = 6, min_samples_split = 10, min_samples_leaf = 7

ET

max_depth = 8, min_samples_split = 9, min_samples_leaf = 3, max_features = 11

max_depth = 15, min_samples_split = 3, min_samples_leaf = 6, max_features = 15

max_depth = 11, min_samples_split = 2, min_samples_leaf = 1, max_features = 8

max_depth = 22, min_samples_split = 2, min_samples_leaf = 2, max_features = 15

AB

n_estimators = 10, base_estimator = base, learning_rate = 0.1

n_estimators = 4, base_estimator = base, learning_rate = 0.1

n_estimators = 29, base_estimator = base, learning_rate = 0.1

n_estimators = 13, base_estimator = base, learning_rate = 0.1

ANN

activation = 'tanh', alpha = 0.0001, batch_size = 'auto', hidden_layer_sizes = 35, learning_rate = 'constant', max_iter = 470

activation = 'tanh', alpha = 0.0001, batch_size = 'auto', hidden_layer_sizes = 25, learning_rate = 'constant', max_iter = 754

activation = 'tanh', alpha = 0.0001, batch_size = 'auto', hidden_layer_sizes = 30, learning_rate = 'constant', max_iter = 470

activation = 'tanh', alpha = 0.0001, batch_size = 'auto', hidden_layer_sizes = 27, learning_rate = 'constant', max_iter = 754