Table 4 Comparison of absolute errors obtained by the OHAM-2 and PIA and RPS methods when \(\alpha = 1.0\) and \(\lambda = 0.001\) for FZK(2,2,2).
\(\tau\) | \(\eta\) | \(y\) | OHAM-2 | Exact | Abs error PIA28 | Abs error RPS28 | OHAM-I43 | Abs error OHAM-2 |
|---|---|---|---|---|---|---|---|---|
0.2 | 0.1 | 0.1 | 0.0000540482 | 0.0000539388 | 3.85217 \(\times 10^{ - 7}\) | 3.85217 \(\times 10^{ - 7}\) | 2.71884 \(\times 10^{ - 8}\) | 1.09476 \(\times 10^{ - 7}\) |
0.3 | 0.1 | 0.1 | 0.0000540482 | 0.0000538841 | 5.75911 \(\times 10^{ - 7}\) | 5.75912 \(\times 10^{ - 7}\) | 4.07394 \(\times 10^{ - 8}\) | 1.64171 \(\times 10^{ - 7}\) |
0.4 | 0.1 | 0.1 | 0.0000540482 | 0.0000538294 | 7.65359 \(\times 10^{ - 7}\) | 7.65352 \(\times 10^{ - 7}\) | 5.42615 \(\times 10^{ - 8}\) | 2.18837 \(\times 10^{ - 7}\) |
0.2 | 0.6 | 0.6 | 0.00303796 | 0.00303651 | 4.66337 \(\times 10^{ - 5}\) | 4.66389 \(\times 10^{ - 5}\) | 6.83433 \(\times 10^{ - 6}\) | 1.45741 \(\times 10^{ - 6}\) |
0.3 | 0.6 | 0.6 | 0.00303796 | 0.00303578 | 6.86056 \(\times 10^{ - 5}\) | 6.86314 \(\times 10^{ - 5}\) | 1.02517 \(\times 10^{ - 5}\) | 2.18589 \(\times 10^{ - 6}\) |
0.4 | 0.6 | 0.6 | 0.00303796 | 0.00303505 | 8.98263 \(\times 10^{ - 5}\) | 8.99046 \(\times 10^{ - 5}\) | 1.36692 \(\times 10^{ - 5}\) | 2.91423 \(\times 10^{ - 6}\) |
0.2 | 0.9 | 0.9 | 0.0115419 | 0.011537 | 5.12131 \(\times 10^{ - 4}\) | 5.14241 \(\times 10^{ - 4}\) | 9.14704 \(\times 10^{ - 5}\) | 4.87687 \(\times 10^{ - 6}\) |
0.3 | 0.9 | 0.9 | 0.0115419 | 0.0115345 | 7.38186 \(\times 10^{ - 4}\) | 7.48450 \(\times 10^{ - 4}\) | 1.37206 \(\times 10^{ - 4}\) | 7.31457 \(\times 10^{ - 6}\) |
0.4 | 0.9 | 0.9 | 0.0115419 | 0.0115321 | 9.57942 \(\times 10^{ - 4}\) | 9.89139 \(\times 10^{ - 4}\) | 1.82943 \(\times 10^{ - 4}\) | 9.75178 \(\times 10^{ - 6}\) |