Table 1 The transfer function’s effect on the mode’s prediction accuracy.

From: Temperature prediction of solar greenhouse based on NARX regression neural network

Order number

Transfer function

Training step

RMS error

Coefficient of determination

Training time

Implication level

Output level

1

radbas

radbas

8

113.0576

0.7486

18.049

2

radbas

logsig

13

137.0880

0.1512

21.977

3

radbas

tansig

13

0.2326

0.9978

22.603

4

radbas

purelin

13

0.0224

0.9998

16.719

5

logsig

radbas

14

142.0744

0.06037

22.967

6

logsig

logsig

10

112.9237

0.7537

23.047

7

logsig

tansig

21

0.9222

0.991

20.620

8

logsig

purelin

7

0.0166

0.9998

18.409

9

tansig

radbas

7

116.1256

0.6604

22.727

10

tansig

logsig

25

112.8936

0.7565

24.207

11

tansig

tansig

19

0.0611

0.9995

23.625

12

tansig

purelin

15

0.0133

0.9999

19.9925

13

purelin

radbas

6

113.5387

0.7458

27.386

14

purelin

logsig

28

113.5672

0.7348

40.981

15

purelin

tansig

5

1.3032

0.9878

23.410

16

purelin

purelin

22

0.0172

0.9998

18.203