Table 3 Comparison results for four-class classification

From: Classification and visual explanation for COVID-19 pneumonia from CT images using triple learning

Tasks

Accuracy (%)

Precision (%)

Sensitivity (%)

Specificity (%)

F-measure (%)

3D network

3D-ResNet1852

45.39±3.16

36.91±2.58

36.82±3.65

44.84±2.97

35.06±2.73

CovNet (ResNet18)50

56.81±0.23

45.78±2.20

43.26±5.53

51.61±6.25

41.51±4.25

DeCovNet51

50.63±3.79

45.42±2.69

45.30±2.11

49.99±3.65

44.58±2.56

2D network

Baseline (ResNet18)

49.48±2.50

42.05±1.34

41.11±1.71

48.67±2.54

40.82±1.48

WSDL4

53.66±1.48

44.04±0.80

45.61±2.80

53.13±1.37

42.63±0.84

ABN44

51.10±0.67

42.26±0.96

41.81±1.62

50.34±0.65

41.32±1.07

MTDL7

52.38±3.36

42.31±2.39

40.49±3.83

47.38±6.95

40.42±2.96

Double Net (ours)

51.11±1.52

41.23±1.63

39.62±1.75

50.35±1.61

39.87±1.65

Triple Net (ours)

54.02±2.30

43.84±2.63

40.37±4.56

44.51±6.40

41.70±3.71

Triple Net + WSDL4(ours)

58.22±3.35

47.22±3.06

48.82±4.69

57.89±3.31

45.30±3.65