Table 6 Statistical analysis of various state-of-art models.

From: ResNet-32 and FastAI for diagnoses of ductal carcinoma from 2D tissue slides

 

Sensitivity (%)

Specificity (%)

Accuracy (%)

F1-Score (%)

Multi-layer perceptron46

76.0

74.0

76.0

–

Random Forest28

93.0

92.6

93.3

93.0

SVM47

90.0

95.50

92.75

–

SVM48

70.00

88.64

84.22

–

Random Forest48

90.44

70.30

75.55

–

Naïve Bayesian48

70.98

72.50

72.14

–

CNN49

84.70

–

84.93

76.07

AlexNet50

84.38

82.35

87.50

84.85

V66-1651

–

–

79.2

–

VGG-1650

83.24

81.29

86.36

83.74

VGG-1950

82.39

80.98

84.66

82.78

Inception V3 + SVM51

–

–

83.4

–

Inception V328

80.5

82.0

79.0

81.0

Inception V3 + Bi-LSTM51

–

–

91.3

–

AlexNet46

93.6

91.7

92.7

–

AlexNet + SVM52

86.2

87.7

87.2

–

Faster RCNN (VGG)53

94.67

89.69

91.68

–

GoogLeNet54

91.70

97.66

91.70

91.92

ResNet-3455

89.37

81.79

90.66

84.19

VGG1956

91.16

97.66

91.16

91.18

Multiple interface learning-CNN56

94.43

77.78

88.81

–

Deep multiple instance learning-CNN57

94.44

88.89

93.06

–

Proposed model

94.83

91.48

93.60

95.90