Table 3 Accuracy, Sensitivity, and Specificity of classifiers for several feature selection and non-feature selection processes.
Classifier | Chi-square features | Two-way ANOVA test features | Regression analysis features | ||||||
|---|---|---|---|---|---|---|---|---|---|
Classification Accuracy | Sensitivity | Specificity | Classification Accuracy | Sensitivity | Specificity | Classification Accuracy | Sensitivity | Specificity | |
Decision tree | 0.75 | 0.84 | 0.40 | 0.73 | 0.89 | 0.47 | 0.78 | 0.87 | 0.53 |
Random forest | 1.0 | 1.0 | 1.0 | 0.992 | 1.0 | 1.0 | 0.83 | 0.95 | 0.73 |
Multinomial Naïve Bayes | 0.47 | 0.96 | 0.60 | 0.73 | 0.92 | 0.46 | 0.72 | 0.97 | 0.60 |
Gaussian Naïve Bayes | 0.70 | 0.96 | 0.40 | 0.72 | 1.0 | 0.0 | 0.78 | 0.97 | 0.60 |
Chi-square ∪ two-way ANOVA ∪ regression | Chi-square ∩ Two-way ANOVA ∩ regression | Without feature selection | |||||||
|---|---|---|---|---|---|---|---|---|---|
Decision tree | 0.75 | 0.81 | 0.48 | 0.80 | 0.95 | 0.68 | 0.77 | 0.92 | 0.55 |
Random forest | 1.0 | 1.0 | 1.0 | 0.78 | 0.89 | 0.62 | 0.75 | 0.98 | 0.75 |
Multinomial Naïve Bayes | 0.59 | 0.87 | 0.36 | 0.66 | 0.93 | 0.50 | 0.93 | 1.0 | 1.0 |
Gaussian Naïve Bayes | 0.60 | 0.87 | 0.33 | 0.66 | 0.93 | 0.50 | 1.0 | 1.0 | 1.0 |