Table 3 Accuracy, Sensitivity, and Specificity of classifiers for several feature selection and non-feature selection processes.

From: Crash severity analysis and risk factors identification based on an alternate data source: a case study of developing country

Classifier

Chi-square features

Two-way ANOVA test features

Regression analysis features

Classification Accuracy

Sensitivity

Specificity

Classification Accuracy

Sensitivity

Specificity

Classification Accuracy

Sensitivity

Specificity

Decision tree

0.75

0.84

0.40

0.73

0.89

0.47

0.78

0.87

0.53

Random forest

1.0

1.0

1.0

0.992

1.0

1.0

0.83

0.95

0.73

Multinomial Naïve Bayes

0.47

0.96

0.60

0.73

0.92

0.46

0.72

0.97

0.60

Gaussian Naïve Bayes

0.70

0.96

0.40

0.72

1.0

0.0

0.78

0.97

0.60

 

Chi-square  two-way ANOVA  regression

Chi-square ∩ Two-way ANOVA ∩ regression

Without feature selection

Decision tree

0.75

0.81

0.48

0.80

0.95

0.68

0.77

0.92

0.55

Random forest

1.0

1.0

1.0

0.78

0.89

0.62

0.75

0.98

0.75

Multinomial Naïve Bayes

0.59

0.87

0.36

0.66

0.93

0.50

0.93

1.0

1.0

Gaussian Naïve Bayes

0.60

0.87

0.33

0.66

0.93

0.50

1.0

1.0

1.0