Table 2 Multivariate ordinary least squares (OLS) regression analysis of marathon average speed at each split distance as a function of the weather factors.

From: Relationship between running performance and weather in elite marathoners competing in the New York City Marathon

OLS regression results

    

Dep. variable

Y

R-squared

0.035

   

Model

OLS

Adj. R-squared

0.035

   

Method

Least squares

F-statistic

5101

   

Date

Sat, 01 Oct 2022

Prob (F-statistic)

0.00

   

Time

18:38:05

Log-likelihood

-1.1319e + 06

   

No. observations

560,731

AIC

2.264e + 06

   

Df residuals

560,726

BIC

2.264e + 06

   

Df model

4

     

Covariance type

Nonrobust

     
 

Coef

Std err

t

P >|t|

[0.025

0.975]

Const

31.1370

0.470

66.200

0

30.215

32.059

Temperature (°C)

−0.1131

0.001

−120.649

0

−0.115

−0.111

Pressure (hPa)

−0.0234

0.000

−50.246

0

−0.024

−0.022

Humidity (%)

0.0534

0.000

125.803

0

0.053

0.054

Sunshine (min)

−0.0011

0.000

−8.262

0

−0.001

−0.001

Omnibus

33,194.095

Durbin–Watson

0.809

  

Prob (omnibus)

0.000

Jarque–Bera (JB)

41,714.737

  

Skew

0.581

Prob (JB)

0.00

  

Kurtosis

3.660

Cond. No

1.98e + 05 s