Table 1 Summaries of methods of previous studies and their corresponding results.

From: Detection of Parkinson’s disease from EEG signals using discrete wavelet transform, different entropy measures, and machine learning techniques

References

FE methods

Classifier(s)

Dataset

Classification accuracy (%)

26

13 layer CNN

Malaysian dataset

88.25

27

CNN + LSTM

UNM dataset

99.2

28

CNN + RNN

Own dataset

99.2

29

Gabor transformation + 2D-CNN

SanDiego dataset

99.44

30

Smoothed pseudo-Wigner Ville distribution + CNN

SanDiego dataset

100

36

WT + Shanono entropy

No used

Finnish dataset

No score

31

WT + sample entropy

Three-way decision model

Chinese dataset

92.68

32

Higher-order spectra (HOS)

DT,KNN,FKNN, NB,PNN,SVM

Malaysian dataset

90.6–99.6

33

PSD

Hyperplanes

UNM dataset

85.4

34

WT + statistical measures

SVM

SanDiego dataset

96.13

35

CSP + entropy

SVM/KNN

SanDiego + UNM

99