Table 1 Regression evaluation metrics of performed algorithms on the experimental data (cross-validation with K-fold = 5).
MSE | RMSE | MAE | R2 | CVRMSE | |
|---|---|---|---|---|---|
kNN | 0.071 | 0.266 | 0.160 | 0.995 | 3.385 |
AdaBoost | 0.116 | 0.341 | 0.157 | 0.992 | 4.332 |
Gradient Boosting | 0.130 | 0.361 | 0.242 | 0.991 | 4.590 |
Random Forest | 0.164 | 0.405 | 0.196 | 0.988 | 5.143 |
Neural Network | 0.794 | 0.891 | 0.578 | 0.943 | 11.321 |
SVM | 3.584 | 1.893 | 1.460 | 0.744 | 24.058 |
Ridge regression | 4.399 | 2.097 | 1.637 | 0.686 | 26.651 |
Linear Regression | 4.399 | 2.097 | 1.637 | 0.686 | 26.651 |
Elastic net regression | 4.399 | 2.097 | 1.637 | 0.686 | 26.651 |