Table 9 Comparison of our proposed BBA based feature selection methodology with various well-known meta-heuristic feature selection algorithms used in the literature. (Here, bold indicates the least number of features selected and highest values of accuracy, Recall, Precision and F1-score attained for each of the HAR datasets).

From: Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems

Dataset

Optimization algorithm Used

Number of features selected

Accuracy (%)

Recall

Precision

F1-Score

HARTH

Cuckoo Search Algorithm(CSA)50

905

87.3

0.873

0.889

0.873

Equilibrium Optimize(EO)51

1105

88.29

0.883

0.891

0.888

Genetic Algorithm(GA)52

1066

88.48

0.885

0.894

0.883

Gravitational Search Algorithm (GSA)53

1135

87.48

0.875

0.894

0.883

Grey Wolf Optimizer(GWO)54

1346

88.49

0.885

0.891

0.888

Proposed Model (BBA)

906

88.89

0.889

0.901

0.888

KU-HAR

Cuckoo Search Algorithm(CSA)50

1208

97.54

0.975

0.956

0.955

Equilibrium Optimize(EO)51

1125

97.76

0.955

0.958

0.958

Genetic Algorithm(GA)52

1157

97.65

0.956

0.957

0.958

Gravitational Search Algorithm (GSA)53

1106

97.86

0.959

0.959

0.959

Grey Wolf Optimizer(GWO)54

1470

97.76

0.958

0.958

0.957

Proposed Model (BBA)

1049

97.97

0.965

0.965

0.965

HuGaDB

Cuckoo Search Algorithm(CSA)50

1113

91.57

0.916

0.922

0.916

Equilibrium Optimize(EO)51

1100

91.01

0.910

0.916

0.911

Genetic Algorithm(GA)52

1047

91.57

0.916

0.922

0.916

Gravitational Search Algorithm(GSA)53

1122

91.01

0.910

0.916

0.911

Grey Wolf Optimizer(GWO)54

1423

91.01

0.910

0.915

0.912

Proposed Model (BBA)

1017

93.82

0.939

0.943

0.939