Table 3 Fit parameters of the synthetic curves obtained from SS trajectories obtained using a Gamma distribution with \(k=0.5\) and a Gaussian distribution with \(\sigma _D=10^{-10} \text {m}^2/{\text {s}}\).
From: A new perspective of molecular diffusion by nuclear magnetic resonance
\(\delta\) (s) | g (T/m) | \(\langle D\rangle =k\theta ({\text {m}}^2/s)\) | Fitted \(D_\alpha ({\text {m}}^2/{\text {s}}^{\alpha })\) | Exact \(\alpha\) | Fitted \(\alpha\) |
|---|---|---|---|---|---|
0.01 | 0.01 | \(1\times 10^{-9}\) | \(7.01043\times 10^{-10} \pm 1.194\times 10^{-12}\) | 1.0 | \(0.84871 \pm 0.00161\) |
0.02 | 0.01 | \(1\times 10^{-9}\) | \(3.99161\times 10^{-10} \pm 1.204\times 10^{-12}\) | 1.0 | \(0.66751 \pm 0.00299\) |
0.003 | 0.01 | \(1\times 10^{-9}\) | \(7.04554\times 10^{-10} \pm 1.440\times 10^{-12}\) | 1.0 | \(0.86612 \pm 0.00184\) |
0.005 | 0.01 | \(1\times 10^{-9}\) | \(8.96327\times 10^{-10} \pm 6.18\times 10^{-13}\) | 1.0 | \(0.93906 \pm 0.00066\) |
\(\delta\) (s) | g (T/m) | \(D_*({\text {m}}^2/{\text {s}}^{\alpha }]\) | Fitted \(D_\alpha ({\text {m}}^2/{\text {s}}^{\alpha }]\) | Exact \(\alpha\) | Fitted \(\alpha\) |
0.01 | 0.01 | \(2\times 10^{-9}\) | \(2.002813\times 10^{-9} \pm 2.35\times 10^{-13}\) | 1.0 | \(0.99741 \pm 0.00011\) |