Table 3 Fit parameters of the synthetic curves obtained from SS trajectories obtained using a Gamma distribution with \(k=0.5\) and a Gaussian distribution with \(\sigma _D=10^{-10} \text {m}^2/{\text {s}}\).

From: A new perspective of molecular diffusion by nuclear magnetic resonance

\(\delta\) (s)

g (T/m)

\(\langle D\rangle =k\theta ({\text {m}}^2/s)\)

Fitted \(D_\alpha ({\text {m}}^2/{\text {s}}^{\alpha })\)

Exact \(\alpha\)

Fitted \(\alpha\)

0.01

0.01

\(1\times 10^{-9}\)

\(7.01043\times 10^{-10} \pm 1.194\times 10^{-12}\)

1.0

\(0.84871 \pm 0.00161\)

0.02

0.01

\(1\times 10^{-9}\)

\(3.99161\times 10^{-10} \pm 1.204\times 10^{-12}\)

1.0

\(0.66751 \pm 0.00299\)

0.003

0.01

\(1\times 10^{-9}\)

\(7.04554\times 10^{-10} \pm 1.440\times 10^{-12}\)

1.0

\(0.86612 \pm 0.00184\)

0.005

0.01

\(1\times 10^{-9}\)

\(8.96327\times 10^{-10} \pm 6.18\times 10^{-13}\)

1.0

\(0.93906 \pm 0.00066\)

\(\delta\) (s)

g (T/m)

\(D_*({\text {m}}^2/{\text {s}}^{\alpha }]\)

Fitted \(D_\alpha ({\text {m}}^2/{\text {s}}^{\alpha }]\)

Exact \(\alpha\)

Fitted \(\alpha\)

0.01

0.01

\(2\times 10^{-9}\)

\(2.002813\times 10^{-9} \pm 2.35\times 10^{-13}\)

1.0

\(0.99741 \pm 0.00011\)