Table 4 Fit parameters of the synthetic curves obtained from VGP trajectories.

From: A new perspective of molecular diffusion by nuclear magnetic resonance

\(\delta\) (s)

g (T/m)

Exact \(D=\frac{\sigma ^2}{2} ({\text {m}}^2/{\text {s}}]\)

Fitted \(D({\text {m}}^2/{\text {s}})\)

D error \((\%)\)

Fitted \(\zeta ({\text {s}}^{-1}]\)

0.01

0.02

\(2\times 10^{-9}\)

\(6.7167\times 10^{-10} \pm 3.1\times 10^{-13}\)

\(66.41\%\)

\(7.1\times 10^5 \pm 1.2\times 10^8\)

0.02

0.02

\(2\times 10^{-9}\)

\(2.8797\times 10^{-10} \pm 3.9\times 10^{-13}\)

\(85.60\%\)

\(3.5\times 10^5 \pm 8.3\times 10^7\)

0.03

0.02

\(2\times 10^{-9}\)

\(1.6233\times 10^{-10} \pm 4.3\times 10^{-13}\)

\(91.84\%\)

\(2.4\times 10^5 \pm 7.1\times 10^7\)

0.03

0.02

\(1.5\times 10^{-9}\)

\(1.5191\times 10^{-10} \pm 3.4\times 10^{-13}\)

\(89.87\%\)

\(2.4\times 10^5 \pm 6.1\times 10^7\)

0.003

0.02

\(2\times 10^{-9}\)

\(1.61876\times 10^{-9} \pm 5.8\times 10^{-13}\)

\(19.06\%\)

\(2.4\times 10^5 \pm 9.9\times 10^8\)

0.003

0.02

\(1.5\times 10^{-9}\)

\(1.29447\times 10^{-9} \pm 1.6\times 10^{-13}\)

\(13.70\%\)

\(552\times 10^5 \pm 12\)