Table 11 AUC estimate for both visual and crisp logic-based classification
From: A machine learning pipeline to classify foetal heart rate deceleration with optimal feature set
Test Result Variable(s) | Area | Std. Error | Asymptotic Sig. | Asymptotic 95% Confidence Interval | |
|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
Visual | 0.693 | 0.075 | 0.146 | 0.427 | 0.721 |
NICHD-based | 0.574 | 0.085 | 0.579 | 0.526 | 0.861 |