Table 1 Comparison of the predictive performance of XGBoost with cross validation, Random Forest without cross validation and the RCA benchmark for the activations using different indicators.
From: Product progression: a machine learning approach to forecasting industrial upgrading
Algorithm | XGBoost-CV | Random Forest | RCA |
|---|---|---|---|
AUC-ROC | 0.698 | 0.724 | 0.592 |
F1 score | 0.0479 | 0.0476 | 0.0369 |
mean Precision@10 | 0.059 | 0.045 | 0.039 |
Precision | 0.34 | 0.035 | 0.023 |
Recall | 0.079 | 0.073 | 0.103 |
MCC | 0.043 | 0.042 | 0.035 |
AUC-PR | 0.018 | 0.017 | 0.011 |
Accuracy | 0.981 | 0.982 | 0.967 |
Negative predictive value | 0.994 | 0.994 | 0.994 |
TP | 202 | 186 | 263 |
FP | 5663 | 5063 | 11413 |
FN | 2359 | 2375 | 2298 |
TN | 403767 | 404367 | 398017 |
Computational cost | 100 | 1 | – |