Table 6 The performance of different classification algorithms on 2-class-dataset according to gose0. Significant values are in bold.

From: Prognosis prediction in traumatic brain injury patients using machine learning algorithms

Algorithm

Acc (%)

Acc rank

Prec (%)

Rec (%)

AUC

NB

81.67 ± 1.29

7

52.61% ± 3.42

51.71% ± 7.88

0.820 ± 0.033

RF

84.45 ± 1.29

1

76.72% ± 12.75

27.89% ± 7.10

0.827 ± 0.046

KNN(k = 5)

80.64 ± 2.40

10

50.11% ± 13.99

24.14% ± 7.53

0.659 ± 0.048

KNN(k = 6)

81.07 ± 2.43

9

51.48 ± 13.05

24.13 ± 9.87

0.679 ± 0.056

DT

82.46 ± 1.15

6

59.98 ± 6.95

30.14 ± 8.62

0.703 ± 0.038

RI

83.24 ± 2.94

4

61.84 ± 12.20

39.82 ± 8.62

0.797 ± 0.067

DL

81.13 ± 2.77

8

52.81 ± 8.79

55.18 ± 12.29

0.845 ± 0.029

GBT

82.82 ± 1.72

5

55.62 ± 3.88

51.72 ± 13.27

0.827 ± 0.046

LR

84.03 ± 1.76

2

64.80 ± 8.94

40.08 ± 8.01

0.842 ± 0.043

GLM

83.91 ± 2.08

3

63.39 ± 9.43

41.08 ± 6.06

0.841 ± 0.039

Avg Acc

82.52