Table 9 The performance of different classification algorithms on 2-class-dataset according to fGOS. Significant values are in bold.

From: Prognosis prediction in traumatic brain injury patients using machine learning algorithms

Algorithm

Acc (%)

Acc Rank

Prec (%)

Rec (%)

AUC

NB

78.65 ± 3.93

7

55.95 ± 8.59

53.82 ± 8.36

0.812 ± 0.039

RF

80.88 ± 1.86

3

77.32 ± 10.90

29.04 ± 4.50

0.807 ± 0.035

KNN(k = 5)

76.95 ± 1.66

9

54.49 ± 7.76

28.54 ± 2.95

0.661 ± 0.060

KNN(k = 6)

76.95 ± 1.96

10

53.56 ± 7.68

29.27 ± 7.31

0.675 ± 0.052

DT

78.22 ± 1.23

8

63.26 ± 9.17

25.33 ± 8.72

0.683 ± 0.039

RI

80.70 ± 2.51

4

66.69 ± 9.83

41.18 ± 7.83

0.758 ± 0.054

DL

78.95 ± 2.74

6

55.82 ± 5.73

59.37 ± 10.79

0.821 ± 0.038

GBT

79.25 ± 3.02

5

57.51 ± 6.86

56.56 ± 7.68

0.823 ± 0.015

LR

81.61 ± 2.58

2

67.61 ± 8.10

45.99 ± 4.21

0.834 ± 0.031

GLM

82.03 ± 2.34

1

68.00 ± 6.36

47.22 ± 8.41

0.834 ± 0.038

Avg Acc

79.42