Table 6 Comparison of state-of-the-art methods for detecting LVH using ECG.
From: Left ventricular hypertrophy detection using electrocardiographic signal
Study (year) | Method | Adopted features | Detection performances | Limitation | ||||
|---|---|---|---|---|---|---|---|---|
ACC | PRE | SEN | SPE | Others | ||||
ECG criteria | ||||||||
 Ref.16 2019 | Cornell Product criteria | Multi-lead ECG | – | – | – | – | AUC = 0.62 | Patients with age < 65 y were excluded |
 Ref.17 2019 | Combined criteria | 12-lead ECG | – | 0.401 | 0.379 | 0.915 | AUC = 0.65 | For a untreated hypertension cohort |
 Ref.18 2021 | Peguero-Lo Presti criteria | 12-lead ECG | – | 0.665 | 0.519 | 0.821 | AUC = 0.7 | Patients with age < 70 y were excluded |
 Ref.15 2021 | Peguero–Lo Presti | Multi-lead ECG | 0.68 | 0.12 | 0.29 | 0.73 | NPV = 0.89 |  |
Cornell voltage | 0.86 | 0.24 | 0.12 | 0.95 | NPV = 0.89 | |||
Cornell product | 0.86 | 0.12 | 0.04 | 0.96 | NPV = 0.89 | |||
Sokolow–Lyon voltage | 0.81 | 0.13 | 0.12 | 0.89 | NPV = 0.89 | |||
Sokolow–Lyon product | 0.86 | 0.13 | 0.04 | 0.96 | NPV = 0.89 | |||
Ref.12 2021 | NCRCHS#1 criterion with multiple linear regression | 3-lead ECG | – | – | 0.90 | 0.36 | AUC = 0.74 |  |
Ref.23 2021 | CHCM#2 | 3-lead ECG | 0.705 | – | 0.743 | 0.687 |  |  |
 Ref.14 2021 | RaVL voltage-duration product | Lead aVL ECG | – | 0.756 | 0.674 | 0.546 | AUC = 0.64 | In older individuals with left bundle branch block |
Sokolow–Lyon criteria | 3-lead ECG | – | 0.75 | 0.261 | 0.818 | AUC = 0.54 | ||
Machine learning models | ||||||||
 Ref.27 2018 | Random forest | ECG data | 0.661 | – | 0.58 | 0.709 |  |  |
 Ref.20 2019 | BART#3-LVH criteria | 26 features#4 | – | 0.299 | 0.29 | 0.946 | AUC = 0.829 | Participants without cardiovascular disease at enrollment |
 Ref.21 2020 | Decision tree with logistic regression | 6 ECG features | 0.733 | – | 0.816 | 0.693 |  |  |
 Ref.24 2020 | Deep neural network | 87 ECG features | 0.736 | 0.73 | 0.667 | 0.782 |  |  |
 Ref.25 2020 | Ensemble neural network#5 | 12-lead ECG signals + demographic features#6 | 0.851 | – | 0.613 | 0.896 | AUC = 0.868 |  |
 Ref.26 2021 | Convolution neural network | 12-lead ECG | – | – | 0.96 | 0.34 | AUC = 0.653 |  |
 Ref.22 2021 | GLMNet#7 | 34-feature 12-lead ECG | – | – | – | – | AUC = 0.873 |  |
This study | BPN | 24-feature 12-lead ECG with ECG beat seg-mentation | 0.961 | 0.958 | 0.966 | 0.956 | Â | Participants without arrhythmia |