Table 6 Comparison of state-of-the-art methods for detecting LVH using ECG.

From: Left ventricular hypertrophy detection using electrocardiographic signal

Study (year)

Method

Adopted features

Detection performances

Limitation

ACC

PRE

SEN

SPE

Others

ECG criteria

 Ref.16

2019

Cornell Product criteria

Multi-lead ECG

–

–

–

–

AUC = 0.62

Patients with age < 65 y were excluded

 Ref.17

2019

Combined criteria

12-lead ECG

–

0.401

0.379

0.915

AUC = 0.65

For a untreated hypertension cohort

 Ref.18

2021

Peguero-Lo Presti criteria

12-lead ECG

–

0.665

0.519

0.821

AUC = 0.7

Patients with age < 70 y were excluded

 Ref.15

2021

Peguero–Lo Presti

Multi-lead ECG

0.68

0.12

0.29

0.73

NPV = 0.89

 

Cornell voltage

0.86

0.24

0.12

0.95

NPV = 0.89

Cornell product

0.86

0.12

0.04

0.96

NPV = 0.89

Sokolow–Lyon voltage

0.81

0.13

0.12

0.89

NPV = 0.89

Sokolow–Lyon product

0.86

0.13

0.04

0.96

NPV = 0.89

Ref.12

2021

NCRCHS#1

criterion with multiple linear regression

3-lead ECG

–

–

0.90

0.36

AUC = 0.74

 

Ref.23

2021

CHCM#2

3-lead ECG

0.705

–

0.743

0.687

  

 Ref.14

2021

RaVL voltage-duration product

Lead aVL ECG

–

0.756

0.674

0.546

AUC = 0.64

In older individuals with left bundle branch block

Sokolow–Lyon criteria

3-lead ECG

–

0.75

0.261

0.818

AUC = 0.54

Machine learning models

 Ref.27

2018

Random forest

ECG data

0.661

–

0.58

0.709

  

 Ref.20

2019

BART#3-LVH criteria

26 features#4

–

0.299

0.29

0.946

AUC = 0.829

Participants without cardiovascular disease at enrollment

 Ref.21

2020

Decision tree with logistic regression

6 ECG features

0.733

–

0.816

0.693

  

 Ref.24

2020

Deep neural network

87 ECG features

0.736

0.73

0.667

0.782

  

 Ref.25

2020

Ensemble neural network#5

12-lead ECG signals + demographic features#6

0.851

–

0.613

0.896

AUC = 0.868

 

 Ref.26

2021

Convolution neural network

12-lead ECG

–

–

0.96

0.34

AUC = 0.653

 

 Ref.22

2021

GLMNet#7

34-feature 12-lead ECG

–

–

–

–

AUC = 0.873

 

This study

BPN

24-feature 12-lead ECG with ECG beat seg-mentation

0.961

0.958

0.966

0.956

 

Participants without arrhythmia

  1. ACC Accuracy, PRE Precision, SEN Sensitivity, SPE Specificity, AUC area under ROC curve, NVP negative predictive value.
  2. #1NCRCHS = Northeast China Rural Cardiovascular Health Study.
  3. #2CHCM = Cardiac Hypertrophy Computer-based Model.
  4. #3BART = Bayesian Additive Regression Trees.
  5. #426 features include age, sex, height, systolic and diastolic blood pressures and 21 ECG features.
  6. #5Ensemble neural network = convolutional neural network + deep neural network.
  7. #6demographic features include age, sex, weight and height.
  8. #7GLMNet = penalized logistic regression with the ElasticNet penalty.
  9. The bold and underlined values indicate the maximum and minimum values, respectively, of each column for ECG criteria or machine learning models.