Table 3 Tunable hyper-parameters elaboration for the paragraphs of prediction post-processing and “bagging” in Sect. 2.2.2.

From: Mask R-CNN assisted 2.5D object detection pipeline of 68Ga-PSMA-11 PET/CT-positive metastatic pelvic lymph node after radical prostatectomy from solely CT imaging

Hyper-parameters

Explanation

Tuning range

Section

τ1

IoU threshold for prediction filtering

[0.1, 0.2, 0.3, …, 1.0]

Window bagging

τ2

Threshold for including final voter numbers

[1–5]

Window bagging

τ3

IoU threshold for determination of bagged prediction hitting GTs

[0.1, 0.2, 0.3, …, 1.0]

Window bagging

τ4

Threshold for filtering predicted detection box in expansion zone

[1, 2, 3, …, 10]

Post-processing

τ5

Absolute threshold for filtering HU

[80, 100, …, 160]

Post-processing

τ6

Quantile threshold for filtering HU

[0.1, 0.2, 0.3, …, 1.0]

Post-processing