Table 5 Investigated PR EoS based thermodynamic models.

From: Solubility of palbociclib in supercritical carbon dioxide from experimental measurement and Peng–Robinson equation of state

PR EoS:

\(P=\frac{RT}{\overline{V }-b(x)}-\frac{a(T,x)}{\overline{V }\left[\overline{V }+b(x)\right]+b\left[\overline{V }-b(x)\right]}\)

PR + vdWa

\(a=\sum_{i}\sum_{j}{{x}_{i}x}_{j}\sqrt{{a}_{i}{a}_{j}}(1-{k}_{ij})\)

\(b=\sum_{i}{x}_{i}{b}_{i}\)

PR + WS + Wilsonb

\(\frac{a}{b}=\sum_{i}{x}_{i}\left(\frac{{a}_{i}}{{b}_{i}}\right)+\frac{{\overline{G} }^{E}}{{C}_{\mathrm{WS}}}\)

\(b=\frac{\sum_{i}\sum_{j}{{x}_{i}x}_{j}\left(\frac{{b}_{i}+{b}_{j}}{2}-\frac{\sqrt{{a}_{i}{a}_{j}}}{RT}\right)}{1-\sum_{i}{x}_{i}\left(\frac{{a}_{i}}{{b}_{i}RT}\right)-\frac{{\overline{G} }^{E}}{{C}_{\mathrm{WS}}RT}}\)

PR + HV + COSMOSACc

\(\frac{a}{b}=\sum_{i}{x}_{i}\left(\frac{{a}_{i}}{{b}_{i}}\right)+\frac{{\overline{G} }^{E}}{{C}_{\mathrm{HV}}}\)

\(b=\sum_{i}{x}_{i}{b}_{i}\)

  1. *ai and bi are determined from critical temperature, critical pressure, and acentric factor of component i as described in the literature50.
  2. akij is an adjustable binary interaction parameter.
  3. b \({C}_{\mathrm{WS}}=\mathrm{ln}\left(\sqrt{2}-1\right)/\sqrt{2}\)60,61. Excess Gibbs energy is determined from the Wilson model62: \({\overline{G} }^{E}=-RT\sum_{i}{x}_{i}\mathrm{ln}\left(\sum_{j}{x}_{j}{\Lambda }_{ij}\right)\) with \({\Lambda }_{ij}=\mathrm{exp}(-{u}_{ij}/RT)\) with \({u}_{ij}\) being adjustable binary interaction parameters.
  4. c \({C}_{\mathrm{HV}}=\mathrm{ln}\left(2\right)\)63. Excess Gibbs energy \({\overline{G} }^{E}\) is calculated from the COSMOSAC model58,59 without any system-specific adjustable parameter.