Table 3 AUROC values of each model developed using various algorithms and training and testing data sets, and AUROC values of logistic regression after attribute selection using training and testing sets (Italic Data).
Algorithms | Outcomes | No BPD | No BPD or Gr1 BPD | Gr3 BPD or death before 36w PMA | Death before 36w PMA | Overall mortality |
|---|---|---|---|---|---|---|
kNN | Training data set | 0.735 | 0.720 | 0.762 | 0.744 | 0.746 |
Testing data set | 0.753 | 0.708 | 0.789 | 0.805 | 0.792 | |
Logistic regression | Training data set | 0.803 | 0.777 | 0.811 | 0.833 | 0.831 |
Testing data set | 0.812 | 0.769 | 0.854 | 0.884 | 0.884 | |
Naïve bayes | Training data set | 0.783 | 0.757 | 0.789 | 0.819 | 0.817 |
Testing data set | 0.781 | 0.736 | 0.841 | 0.877 | 0.879 | |
Neural network | Training data set | 0.761 | 0.735 | 0.779 | 0.783 | 0.785 |
Testing data set | 0.766 | 0.721 | 0.786 | 0.814 | 0.818 | |
Random forest | Training data set | 0.765 | 0.747 | 0.780 | 0.784 | 0.780 |
Testing data set | 0.765 | 0.733 | 0.819 | 0.857 | 0.845 | |
SVM | Training data set | 0.645 | 0.647 | 0.631 | 0.659 | 0.639 |
Testing data set | 0.664 | 0.623 | 0.670 | 0.804 | 0.708 | |
Classification tree | Training data set | 0.632 | 0.645 | 0.583 | 0.587 | 0.560 |
Testing data set | 0.682 | 0.642 | 0.646 | 0.608 | 0.702 | |
After attribute selection | ||||||
Logistic regression | Training data set | 0.802 | 0.776 | 0.811 | 0.835 | 0.833 |
Testing data set | 0.801 | 0.763 | 0.850 | 0.881 | 0.881 | |