Table 2 Different evaluation metric values for the different machine learning models from Step 1 of Experiment 1.1. The highest value for each column (aka. evaluation metric) is boldfaced.

From: Exploring a global interpretation mechanism for deep learning networks when predicting sepsis

 

Accuracy (%)

Precision (%)

Specificity (%)

Recall/sensitivity (%)

F1 score

Mathew’s coefficient

Conv1D

81.5

74.4

63.8

63.8

0.66

0.42

RF

99.0

92.5

99.9

56.3

0.70

0.92

SVM

85.0

9.7

85.0

74.4

0.17

0.23

AdaBoost

88.0

10.2

88.3

60.8

0.17

0.21

MSC

67.5

50.5

66.3

69.8

0.58

0.34

  1. Highest values obtained are in bold.