Table 4 Prediction results for individual classifier algorithms.
From: An open automation system for predatory journal detection
Model | Number of Word Features (NWF) | Recall | Number of Word Features (NWF) | F1 |
|---|---|---|---|---|
GNB | 8450 | 0.89 | 3700 | 0.752 |
MNB | 1000 | 0.904 | 1150 | 0.93 |
Logistic Regression | 350 | 0.964 | 1650 | 0.97 |
Random Forest | 850 | 0.982 | 1200 | 0.98 |
SGD | 7950 | 0.97 | 1550 | 0.972 |
SVM | 350 | 0.952 | 2400 | 0.934 |
KNN | 3000 | 0.945 | 500 | 0.931 |
Voting | 2900 | 0.97 | 1700 | 0.973 |
Voting (no GNB) | 2150 | 0.976 | 1100 | 0.972 |
Voting (the top 3 model) | 950 | 0.94 | 1800 | 0.975 |