Table 1 Quantitative evaluation metrics of the AI framework on the unseen dataset.

From: A transparent artificial intelligence framework to assess lung disease in pulmonary hypertension

Metric

ResNet-50

DenseNet121

DenRes-131

The AI framework for the \(64\times 64\times 3\) patch size

 Jaccard score (%)

74.63 ± 17.95

70.12 ± 18.32

69.21 ± 17.89

 Hamming distances (mm)

16.21 ± 6.21

18.01 ± 8.01

18.07 ± 9.03

 Root mean square error

1.246 ± 0.510

1.282 ± 0.634

1.281 ± 0.700

 f1 score (%)

77.33 ± 10.02

73.21 ± 13.54

73.01 ± 13.77

 Recall score (%)

78.21 ± 9.87

74.01 ± 14.01

73.99 ± 14.04

 Precision score (%)

78.33 ± 9.02

74.32 ± 14.21

74.35 ± 14.98

 Accuracy (%)

78.23 ± 10.00

74.00 ± 15.01

73.12 ± 16.00

 MCC (%)

67.23 ± 17.21

64.12 ± 18.12

63.89 ± 19.00

The AI framework for the \(32\times 32\times 3\) patch size

 Jaccard score (%)

69.41 ± 21.94

90.53 ± 4.38

*91.83 ± *3.48

 Hamming distances (mm)

17.29 ± 7.29

6.34 ± 3.82

*5.96 ± *3.17

 Root mean square error

1.171 ± 0.419

0.904 ± 0.54

*0.855 ± 0.40

 f1 score (%)

71.23 ± 10.11

92.06 ± 5.40

*93.87 ± 4.20

 Recall score (%)

70.12 ± 10.33

93.21 ± 4.11

*93.42 ± *2.84

 Precision score (%)

71.22 ± 10.43

94.53 ± 2.52

*96.54 ± 2.82

 Accuracy (%)

70.15 ± 10.32

93.02 ± 3.93

*93.69 ± 3.90

 MCC (%)

65.34 ± 20.32

77.74 ± 8.46

*80.21 ± 7.83

The AI framework for the \(16\times 16\times 3\) patch size

 Jaccard score (%)

70.05 ± 20.67

87.70 ± 8.90

89.01 ± 5.81

 Hamming distances (mm)

17.13 ± 7.11

8.08 ± 5.26

7.99 ± 4.48

 Root mean square error

1.146 ± 0.409

1.035 ± 0.42

1.015 ± *0.32

 f1 score (%)

72.01 ± 10.00

92.06 ± 5.10

92.27 ± *4.87

 Recall score (%)

71.00 ± 10.01

90.67 ± 4.53

91.64 ± 4.33

 Precision score (%)

71.87 ± 10.67

95.71 ± 2.08

95.65 ± *2.20

 Accuracy (%)

70.78 ± 10.78

90.88 ± 4.74

91.51 ± *3.27

 MCC (%)

66.01 ± 20.01

73.10 ± 11.71

74.80 ± *7.21

The AI framework for the \(8\times 8\times 3\) patch size

 Jaccard score (%)

68.56 ± 21.09

69.20 ± 18.52

69.10 ± 18.20

 Hamming distances (mm)

16.61 ± 6.23

18.27 ± 9.91

18.31 ± 9.83

 Root mean square error

1.587 ± 0.355

1.361 ± 0.839

1.432 ± 0.840

 f1 score (%)

74.13 ± 13.12

72.51 ± 15.54

72.41 ± 15.74

 Recall score (%)

72.41 ± 10.82

73.41 ± 16.01

73.49 ± 16.04

 Precision score (%)

72.63 ± 12.21

74.32 ± 17.22

73.35 ± 16.98

 Accuracy (%)

73.53 ± 11.90

73.60 ± 17.11

73.10 ± 16.89

 MCC (%)

61.43 ± 18.20

64.02 ± 19.18

63.59 ± 19.20

  1. \(*\)The highest performance of each metric score.
  2. Significant values are given in bold.