Table 7 Chaser and target spacecraft initial conditions in scenario 1.
From: Coupled position and attitude control of a servicer spacecraft in rendezvous with an orbiting target
Initial relative position | \({r}_{{rel}_{0}}={\left[\mathrm{20,50,50} \right]}^{T}\) \(\left[\mathrm{m}\right]\) |
Initial relative velocity | \({\dot{r}}_{{rel}_{0}}={\left[\mathrm{0,0},0 \right]}^{T}\) \(\left[\mathrm{m}/\mathrm{s}\right]\) |
Target angular velocity | \({\omega}_{T}={\left[\mathrm{0,0},0 \right]}^{T}\) \(\left[\mathrm{deg}/\mathrm{s}\right]\) |
Target Euler angles | \({E}_{T}={\left[\mathrm{0,0}, 0 \right]}^{T}\) \(\left[\mathrm{deg}\right]\) |
Target’s initial velocity in body frame | \({\mathrm{v}}_{T}=\left[- 0.003057, - 6.656, - 6878\right]\) \(\left[\mathrm{km}/\mathrm{s}\right]\) |
Target’s initial position in body frame | \({r}_{T}=\left[7.613, 0, 0\right]\) \(\left[\mathrm{km}\right]\) |
Chaser initial angular velocity | \({\omega}_{C}={\left[\mathrm{0,0},0 \right]}^{T}\) \(\left[\mathrm{deg}/\mathrm{s}\right]\) |
Chaser initial Euler angles | \({E}_{{c}_{0}}={\left[\mathrm{6,0}, 6 \right]}^{T}\) \(\left[\mathrm{deg}\right]\) |
Chaser’s initial velocity in body frame | \({\mathrm{v}}_{C}=\left[7.571, - 0.7914, 0.08318\right]\) \(\left[\mathrm{km}/\mathrm{s}\right]\) |
Chaser’s initial position in body frame | \({r}_{C}=\left[- 5.966e-15, - 719, - 6840\right] \left[\mathrm{km}\right]\) |
Disturbances | Not applied |
Uncertainties | Not applied |
RWs misalignment | Not applied |