Table 7 Chaser and target spacecraft initial conditions in scenario 1.

From: Coupled position and attitude control of a servicer spacecraft in rendezvous with an orbiting target

Initial relative position

\({r}_{{rel}_{0}}={\left[\mathrm{20,50,50} \right]}^{T}\) \(\left[\mathrm{m}\right]\)

Initial relative velocity

\({\dot{r}}_{{rel}_{0}}={\left[\mathrm{0,0},0 \right]}^{T}\) \(\left[\mathrm{m}/\mathrm{s}\right]\)

Target angular velocity

\({\omega}_{T}={\left[\mathrm{0,0},0 \right]}^{T}\) \(\left[\mathrm{deg}/\mathrm{s}\right]\)

Target Euler angles

\({E}_{T}={\left[\mathrm{0,0}, 0 \right]}^{T}\) \(\left[\mathrm{deg}\right]\)

Target’s initial velocity in body frame

\({\mathrm{v}}_{T}=\left[- 0.003057, - 6.656, - 6878\right]\) \(\left[\mathrm{km}/\mathrm{s}\right]\)

Target’s initial position in body frame

\({r}_{T}=\left[7.613, 0, 0\right]\) \(\left[\mathrm{km}\right]\)

Chaser initial angular velocity

\({\omega}_{C}={\left[\mathrm{0,0},0 \right]}^{T}\) \(\left[\mathrm{deg}/\mathrm{s}\right]\)

Chaser initial Euler angles

\({E}_{{c}_{0}}={\left[\mathrm{6,0}, 6 \right]}^{T}\) \(\left[\mathrm{deg}\right]\)

Chaser’s initial velocity in body frame

\({\mathrm{v}}_{C}=\left[7.571, - 0.7914, 0.08318\right]\) \(\left[\mathrm{km}/\mathrm{s}\right]\)

Chaser’s initial position in body frame

\({r}_{C}=\left[- 5.966e-15, - 719, - 6840\right] \left[\mathrm{km}\right]\)

Disturbances

Not applied

Uncertainties

Not applied

RWs misalignment

Not applied