Table 2 Model performance to predict metastasis in ML approaches using 5-fold cross validation in original data and Balance data with oversampling method.

From: Predicting metastasis in gastric cancer patients: machine learning-based approaches

Models

Dataset

Sensitivity%

Specificity%

Precision%

F1

AUC

LR

Original data

Train

.86

.86

.76

.81

.93

Test

.86

.78

.77

.81

.88

Balanced data

Train

.93

.83

.88

.87

.93

Test

.90

.78

.84

.84

.86

NN

Original data

Train

.93

.93

.88

.88

.98

Test

.76

.78

.75

.77

.86

Balanced data

Train

.98

.87

.95

.95

.99

Test

.91

.81

.86

.86

.87

RF

Original data

Train

.89

.95

.92

.90

.98

Test

.80

.83

.80

.80

.87

Balanced data

Train

.98

.95

.96

.96

.99

Test

.91

.78

.85

.85

.87

NB

Original data

Train

.83

.85

.74

.79

.90

Test

.89

.78

.77

.83

.88

Balanced data

Train

.87

.84

.86

.86

.91

Test

.86

.81

.83

.83

.86

DT

Original data

Train

.82

.97

.94

.88

.96

Test

.58

.78

.69

.63

.75

Balanced data

Train

.94

.96

.95

.95

.98

Test

.80

.81

.80

.80

.83

SVM

Original data

Train

.94

.86

.77

.84

.94

Test

.92

.76

.76

.85

.85

Balanced data

Train

.98

.87

.93

.92

.93

Test

.93

.80

.87

.86

.85

  1. Abrivation: Naive Bayes (NB), Random Forest (RF), Support Vector Machine (SVM), Neural Network (NN), Desicion Tree (RT) and Logistic Regression (LR).