Table 2 Comparison of model performances between the proposed model and the conventional machine learning models.
Model | Mean (SD) | ||||
|---|---|---|---|---|---|
AUROC | F1-score | Sensitivity, % | Specificity, % | Accuracy, % | |
LR | 0.886 (0.081) | 0.839 (0.093) | 83.4 (6.1) | 83.2 (13.3) | 83.3 (9.8) |
XGBoost | 0.853 (0.069) | 0.810 (0.094) | 79.5 (7.7) | 80.5 (11.8) | 80.5 (9.9) |
SVM | 0.890 (0.052) | 0.882 (0.052) | 82.7 (6.0) | 89.7 (7.4) | 88.0 (5.4) |
MDNN | 0.917 (0.042) | 0.884 (0.048) | 85.2 (9.3) | 89.2 (6.8) | 88.2 (5.0) |