Table 1 The thermophysical properties of nanofluid.

From: Numerical simulation and mathematical modeling for heat and mass transfer in MHD stagnation point flow of nanofluid consisting of entropy generation

Properties

Nanofluid

Density

\(\rho_{nf} = \varphi \rho_{s} + \left( {1 - \varphi } \right)\rho_{f}\)

Electrical conductivity

\(\frac{{\sigma_{nf} }}{{\sigma_{f} }} = 1 + \frac{{3\left( {\frac{{\sigma_{s} }}{{\sigma_{f} }} - 1} \right)\varphi }}{{\left( {\frac{{\sigma_{s} }}{{\sigma_{f} }} + 2} \right) - \left( {\frac{{\sigma_{s} }}{{\sigma_{f} }} - 1} \right)\varphi }}\)

Heat capacity

\(\left( {\rho C_{p} } \right)_{nf} = \varphi \left( {\rho C_{p} } \right)_{s} + \left( {1 - \varphi } \right)\left( {\rho C_{p} } \right)_{f}\)

Viscosity

\(\mu_{nf} = \frac{{\mu_{f} }}{{\left( {1 - \varphi } \right)^{2.5} }}\)

Thermal diffusivity

\(\alpha_{nf} = \frac{{k_{nf} }}{{\left( {\rho C_{p} } \right)_{nf} }}\)

Thermal conductivity

\(\frac{{k_{nf} }}{{k_{f} }} = \frac{{\left( {\frac{{k_{s} }}{{k_{f} }} + 2} \right) - 2\varphi \left( {1 - \frac{{k_{s} }}{{k_{f} }}} \right)}}{{\left( {\frac{{k_{s} }}{{k_{f} }} + 2} \right) + \varphi \left( {1 - \frac{{k_{s} }}{{k_{f} }}} \right)}}\)