Table 4 Experimental results in comparison with other algorithms.

From: Dual-branch hybrid network for lesion segmentation in gastric cancer images

Method

IOU

Dice

ACC

RE

PR

Kvasir-SEG

 U-Net

0.749

0.821

0.923

0.817

0.825

 U-Net +  + 

0.752

0.825

0.927

0.824

0.831

 DeepLabV3

0.801

0.876

0.956

0.923

0.841

 PraNet

0.835

0.896

0.973

0.915

0.885

 TransFuse

0.784

0.873

0.957

0.898

0.862

 TransUnet

0.796

0.884

0.962

0.905

0.873

 Ours

0.823

0.892

0.975

0.917

0.909

CVC-ClinicDB

 U-Net

0.727

0.825

0.923

0.827

0.831

 U-Net +  + 

0.734

0.837

0.935

0.841

0.827

 DeepLabV3

0.748

0.849

0.968

0.879

0.836

 PraNet

0.849

0.899

0.982

0.936

0.896

 TransFuse

0.765

0.852

0.978

0.885

0.843

 TransUnet

0.837

0.909

0.979

0.895

0.874

 Ours

0.851

0.893

0.985

0.907

0.889

  1. *Bold characters indicate the best performance.