Table 4 Experimental results in comparison with other algorithms.
From: Dual-branch hybrid network for lesion segmentation in gastric cancer images
Method | IOU | Dice | ACC | RE | PR |
|---|---|---|---|---|---|
Kvasir-SEG | |||||
 U-Net | 0.749 | 0.821 | 0.923 | 0.817 | 0.825 |
 U-Net +  +  | 0.752 | 0.825 | 0.927 | 0.824 | 0.831 |
 DeepLabV3 | 0.801 | 0.876 | 0.956 | 0.923 | 0.841 |
 PraNet | 0.835 | 0.896 | 0.973 | 0.915 | 0.885 |
 TransFuse | 0.784 | 0.873 | 0.957 | 0.898 | 0.862 |
 TransUnet | 0.796 | 0.884 | 0.962 | 0.905 | 0.873 |
 Ours | 0.823 | 0.892 | 0.975 | 0.917 | 0.909 |
CVC-ClinicDB | |||||
 U-Net | 0.727 | 0.825 | 0.923 | 0.827 | 0.831 |
 U-Net +  +  | 0.734 | 0.837 | 0.935 | 0.841 | 0.827 |
 DeepLabV3 | 0.748 | 0.849 | 0.968 | 0.879 | 0.836 |
 PraNet | 0.849 | 0.899 | 0.982 | 0.936 | 0.896 |
 TransFuse | 0.765 | 0.852 | 0.978 | 0.885 | 0.843 |
 TransUnet | 0.837 | 0.909 | 0.979 | 0.895 | 0.874 |
 Ours | 0.851 | 0.893 | 0.985 | 0.907 | 0.889 |