Table 1 Details of Bayesian statistical tests.

From: Memory, perceptual, and motor costs affect the strength of categorical encoding during motor learning of object properties

Reference

Condition

Mean (Δ%)

SD (Δ%)

DF

H1

H0

B10

Same color

Small family

−45.41

10.45

29.25

 ~ HN(34.58) ≤ 0

  0

494.92

Distinct colors

−29.52

10.33

31.01

 ~ HN(34.58) ≤ 0

  0

17..33

Frequent outlier

−10.79

10.50

29.16

 ~ HN(34.58) ≤ 0

  0

0.80

Similar colors

−1.34

7.59

37.97

 ~ HN(34.58) ≤ 0

  0

0.25

Concurrent

5.55

8.97

34.80

 ~ HN(34.58) ≤ 0

  0

0.17

    

 ~ HN(4.24) ≥ 0

  0

1.13

Nonlinear

9.89

8.17

37.05

 ~ HN(34.58) ≤ 0

  0

0.11

    

 ~ HN(4.24) ≥ 0

  0

1.48

Distinct colors

Similar colors

28.18

10.41

31.54

 ~ HN(15.71) ≥ 0

  0

10.80

Added noise

28.00

11.18

35.62

 ~ HN(15.71) ≥ 0

  0

7.76

One-by-one

15.46

12.25

37.91

 ~ HN(15.71) ≥ 0

  0

1.70

Nonlinear+

12.00

12.19

37.87

 ~ HN(15.71) ≥ 0

  0

1.30

Speeded response

8.83

12.36

37.97

 ~ HN(15.71) ≥ 0

  0

1.03

Concurrent+ 

7.60

12.99

37.83

 ~ HN(15.71) ≥ 0

  0

0.95

Same/distinct

Nonlinear/nonlinear+

10.95

7.25

78.00

 ~ HN(11.51) ≥ 0

  0

2.16

  1. Each row is one comparison. The data (likelihood) model was a Student’s t distribution with mean equal to the change in categorical encoding strength from reference to target condition, standard deviation estimated assuming unequal variances, and Welch-Satterthwaite degrees of freedom. The alternative hypothesis model was a half-normal distribution (HN) with standard deviation determined by the results of the Reference condition (see Methods). In all cases, the null hypothesis model was a point distribution at zero.