Table 1 Comparing the AUC scores (with a 95% confidence interval) of the multimodal classifiers to single modality classifiers and existing clinical scores.

From: Multimodal fusion models for pulmonary embolism mortality prediction

Model

AUC

Accuracy

Specificity

Sensitivity

PPV

NPV

Single modalities

 EHR

0.87 [0.78–0.95]

0.81

0.79

0.9

0.41

0.98

 CTPA-SANet

0.82 [0.74–0.91]

0.79

0.79

0.8

0.38

0.96

 CTPA-Swin UNETR

0.73 [0.6–0.85]

0.56

0.52

0.8

0.21

0.94

Clinical predictive rules

 PESI

0.8 [0.7–0.87]

0.61

0.56

0.9

0.25

0.97

 sPESI

0.77 [0.63–0.87]

0.48

0.42

0.9

0.20

0.96

Fusion models

 Late-average (Fig. 7a)

0.85 [0.75–0.93]

0.68

0.65

0.9

0.29

0.98

 Late-TabNet (Fig. 7b)

0.92 [0.87–0.98]

0.89

0.89

0.9

0.56

0.98

 Late-XGBoost (Fig. 7c)

0.88 [0.8–0.95]

0.76

0.74

0.9

0.36

0.98

 Early (Fig. 7d)

0.9 [0.83–0.96]

0.81

0.79

0.9

0.41

0.98

 Intermediate + SANet(Fig. 7e)

\({\textbf {0.96 [0.93-1.0]}}\)

\({\textbf {0.93}}\)

\({\textbf {0.94}}\)

\({\textbf {0.9}}\)

\({\textbf {0.69}}\)

\({\textbf {0.98}}\)

 Intermediate + Swin UNETR (Fig. 7f)

0.95 [0.9–0.98]

0.87

0.87

0.9

0.53

0.98

 MBT (Fig. 7g)

0.9 [0.85–0.96]

0.82

0.81

0.9

0.43

0.98

  1. The intermediate fusion model significantly outperformed all the other methods (Kolmogorov-Smirnov test, with \(p \le 0.05\)).
  2. Best performing values are in [bold].