Table 3 Number of epochs, training time, and classifications performed by different architectures of RCNNs for sweet potato roots regarding shape, damage caused by insects, and skin color. UFMG (2022).

From: Convolutional neural networks in the qualitative improvement of sweet potato roots

Var

Architecture

Epochs

Time

TP

FN

FP

TN

Shape

VGG-16

70

0:29:58.5

517

127

132

382

Inception-v3

25

0:12:00.3

543

101

158

356

ResNet-50

76

0:31:48.1

526

118

160

354

InceptionResNetV2

17

0:17:59.3

630

14

20

494

EfficientNetB3

100

1:05:30.8

567

77

138

376

Damage caused by insects

VGG-16

95

0:36:46.8

97

46

299

715

Inception-v3

18

0:07:47.7

111

32

99

915

ResNet-50

24

0:28:16.3

73

70

251

763

InceptionResNetV2

11

0:06:27.7

140

3

38

976

EfficientNetB3

100

0:45:22.6

87

56

262

752

Skin color

VGG-16

80

0:34:56.5

464

96

70

528

Inception-v3

31

0:15:07.8

455

105

184

414

ResNet-50

98

1:20:17.9

481

79

98

500

InceptionResNetV2

32

0:34:53.3

540

20

2

596

EfficientNetB3

98

1:06:43.3

505

55

54

544

  1. TP true positives, FN false negatives, FP false positives, TN true negatives.
  2. Source: Authors (2022).