Table 4 Evaluators of the goodness of fit for RCNNS with different architectures in classifying sweet potato roots according to shape, damage caused by insects, and skin color. UFMG (2022).

From: Convolutional neural networks in the qualitative improvement of sweet potato roots

Var

Architecture

Precision

Recall

F1

Accuracy

Specificity

Shape

VGG-16

0.797

0.803

0.800

0.776

0.743

Inception-v3

0.775

0.843

0.807

0.776

0.693

ResNet-50

0.767

0.817

0.791

0.760

0.689

InceptionResNetV2

0.969

0.978

0.974

0.971

0.961

EfficientNetB3

0.804

0.880

0.841

0.814

0.732

Damage by insects

VGG-16

0.245

0.678

0.360

0.702

0.705

Inception-v3

0.529

0.776

0.629

0.887

0.902

ResNet-50

0.225

0.510

0.313

0.723

0.752

InceptionResNetV2

0.787

0.979

0.872

0.965

0.963

EfficientNetB3

0.249

0.608

0.354

0.725

0.742

Skin color

VGG-16

0.869

0.829

0.848

0.857

0.883

Inception-v3

0.712

0.813

0.759

0.750

0.692

ResNet-50

0.831

0.859

0.845

0.847

0.836

InceptionResNetV2

0.996

0.964

0.980

0.981

0.997

EfficientNetB3

0.903

0.902

0.903

0.906

0.910

  1. Source: Authors (2022).