Table 4 Evaluators of the goodness of fit for RCNNS with different architectures in classifying sweet potato roots according to shape, damage caused by insects, and skin color. UFMG (2022).
From: Convolutional neural networks in the qualitative improvement of sweet potato roots
Var | Architecture | Precision | Recall | F1 | Accuracy | Specificity |
|---|---|---|---|---|---|---|
Shape | VGG-16 | 0.797 | 0.803 | 0.800 | 0.776 | 0.743 |
Inception-v3 | 0.775 | 0.843 | 0.807 | 0.776 | 0.693 | |
ResNet-50 | 0.767 | 0.817 | 0.791 | 0.760 | 0.689 | |
InceptionResNetV2 | 0.969 | 0.978 | 0.974 | 0.971 | 0.961 | |
EfficientNetB3 | 0.804 | 0.880 | 0.841 | 0.814 | 0.732 | |
Damage by insects | VGG-16 | 0.245 | 0.678 | 0.360 | 0.702 | 0.705 |
Inception-v3 | 0.529 | 0.776 | 0.629 | 0.887 | 0.902 | |
ResNet-50 | 0.225 | 0.510 | 0.313 | 0.723 | 0.752 | |
InceptionResNetV2 | 0.787 | 0.979 | 0.872 | 0.965 | 0.963 | |
EfficientNetB3 | 0.249 | 0.608 | 0.354 | 0.725 | 0.742 | |
Skin color | VGG-16 | 0.869 | 0.829 | 0.848 | 0.857 | 0.883 |
Inception-v3 | 0.712 | 0.813 | 0.759 | 0.750 | 0.692 | |
ResNet-50 | 0.831 | 0.859 | 0.845 | 0.847 | 0.836 | |
InceptionResNetV2 | 0.996 | 0.964 | 0.980 | 0.981 | 0.997 | |
EfficientNetB3 | 0.903 | 0.902 | 0.903 | 0.906 | 0.910 |