Table 4 Predictive performance of eighteen regression algorithms in predicting AD in the waterbodies.
Rank | ML | MSE | ML | RMSE | ML | R2 | ML | MAD |
|---|---|---|---|---|---|---|---|---|
1 | XGB | 0.0059 | XGB | 0.0770 | XGB | 0.9912 | Cubist | 0.0437 |
2 | Cubist | 0.0117 | Cubist | 0.1081 | Cubist | 0.9827 | XGB | 0.0440 |
3 | ANET6 | 0.0172 | ANET6 | 0.1310 | M5P | 0.9589 | ANET6 | 0.0856 |
4 | ANRT42 | 0.0220 | ANET42 | 0.1483 | RF | 0.9584 | M5P | 0.0863 |
5 | ANET33 | 0.0253 | ANET33 | 0.1590 | BRT | 0.8140 | ANET33 | 0.0987 |
6 | M5P | 0.0275 | M5P | 0.1657 | KNN | 0.7459 | RF | 0.1044 |
7 | RF | 0.0282 | RF | 0.1679 | ANET6 | 0.6727 | ANET42 | 0.1078 |
8 | BRT | 0.1261 | BRT | 0.3551 | SVR | 0.6294 | SVR | 0.2142 |
9 | KNN | 0.1723 | KNN | 0.4150 | MARS | 0.5913 | KNN | 0.2297 |
10 | SVR | 0.2475 | SVR | 0.4975 | ANET42 | 0.5804 | BRT | 0.2385 |
11 | MARS | 0.2770 | MARS | 0.5263 | DTR | 0.5460 | DTR | 0.3146 |
12 | DTR | 0.3032 | DTR | 0.5506 | ANET33 | 0.5178 | MARS | 0.3176 |
13 | GBM | 0.3547 | GBM | 0.5955 | GBM | 0.4768 | GBM | 0.4148 |
14 | NNT | 0.3834 | NNT | 0.6192 | NNT | 0.4259 | NNT | 0.4399 |
15 | ENR | 0.4853 | ENR | 0.6967 | ENR | 0.2732 | LRSS | 0.5421 |
16 | LR | 0.5036 | LR | 0.7097 | LR | 0.2570 | LR | 0.5774 |
17 | LRSS | 0.50506 | LRSS | 0.7107 | LRSS | 0.2549 | ENR | 0.6104 |
18 | ELM | 0.5447 | ELM | 0.7380 | ELM | 0.1965 | ELM | 0.6368 |