Table 4 Predictive performance of eighteen regression algorithms in predicting AD in the waterbodies.

From: Machine learning-guided determination of Acinetobacter density in waterbodies receiving municipal and hospital wastewater effluents

Rank

ML

MSE

ML

RMSE

ML

R2

ML

MAD

1

XGB

0.0059

XGB

0.0770

XGB

0.9912

Cubist

0.0437

2

Cubist

0.0117

Cubist

0.1081

Cubist

0.9827

XGB

0.0440

3

ANET6

0.0172

ANET6

0.1310

M5P

0.9589

ANET6

0.0856

4

ANRT42

0.0220

ANET42

0.1483

RF

0.9584

M5P

0.0863

5

ANET33

0.0253

ANET33

0.1590

BRT

0.8140

ANET33

0.0987

6

M5P

0.0275

M5P

0.1657

KNN

0.7459

RF

0.1044

7

RF

0.0282

RF

0.1679

ANET6

0.6727

ANET42

0.1078

8

BRT

0.1261

BRT

0.3551

SVR

0.6294

SVR

0.2142

9

KNN

0.1723

KNN

0.4150

MARS

0.5913

KNN

0.2297

10

SVR

0.2475

SVR

0.4975

ANET42

0.5804

BRT

0.2385

11

MARS

0.2770

MARS

0.5263

DTR

0.5460

DTR

0.3146

12

DTR

0.3032

DTR

0.5506

ANET33

0.5178

MARS

0.3176

13

GBM

0.3547

GBM

0.5955

GBM

0.4768

GBM

0.4148

14

NNT

0.3834

NNT

0.6192

NNT

0.4259

NNT

0.4399

15

ENR

0.4853

ENR

0.6967

ENR

0.2732

LRSS

0.5421

16

LR

0.5036

LR

0.7097

LR

0.2570

LR

0.5774

17

LRSS

0.50506

LRSS

0.7107

LRSS

0.2549

ENR

0.6104

18

ELM

0.5447

ELM

0.7380

ELM

0.1965

ELM

0.6368