Table 8 Quantitative comparison between the proposed model (SA + ResNet50) and other classification networks (InceptionV3, VGG16, ResNet101, VGG19, and ResNet18 each with or without SA, and also ResNet50 without SA). For all of them we use SGD Optimizer during the training phase.

From: Scale-adaptive model for detection and grading of age-related macular degeneration from color retinal fundus images

 

TP

TN

FP

FN

Precision

Sensitivity

or

Recall (%)

F1-Score

(%)

Specificity

(%)

Accuracy

(%)

AUC

(%)

SA + ResNet50

127

392

4

5

0.9695

96.21

96.6

99

96.2

98.83

ResNet50

118

386

10

14

0.92

89.4

90.8

96.6

91.7

98.3

SA +VGG16

124

388

8

8

0.939

93.9

93.9

98

93.9

98.87

VGG16

118

385

11

14

0.9147

89.4

90.4

97.2

90.9

98.8

SA + InceptionV3

123

388

8

9

0.93

93.2

93.5

98

93.9

98

InceptionV3

120

384

12

12

0.909

90.9

90.9

97

90.9

97

SA + ResNet101

114

385

11

18

0.912

86.36

97.2

88.7

89.4

97.86

ResNet101

115

384

12

17

0.9055

87.12

97

88

87.9

98.09

SA +VGG19

112

380

16

20

0.875

84.85

96

86.2

85.6

97.6

VGG19

125

391

5

7

0.9615

94.7

98.7

95.4

95.5

99.22

SA + ResNet18

100

378

18

32

0.8475

75.76

80

95.5

80.3

95.32

ResNet18

89

370

26

43

0.7739

67.42

72.1

93.4

72.7

91.41