Table 9 Quantitative comparison between (SA + ResNet50) model and other classification networks (InceptionV3, VGG16, ResNet101, VGG19, and ResNet18 each with or without SA, and also ResNet50 without SA). For all of them we use Adam Optimizer during the training phase.

From: Scale-adaptive model for detection and grading of age-related macular degeneration from color retinal fundus images

 

TP

TN

FP

FN

Precision

Sensitivity

or

Recall (%)

F1-Score

(%)

Specificity

(%)

Accuracy

(%)

AUC

(%)

SA + ResNet50

129

393

3

3

0.977

97.7

97.7

99.2

97.7

99

ResNet50

126

390

6

6

0.9545

95.5

95.8

98.5

95.5

98.7

SA +VGG16

26

368

28

106

0.4815

19.7

28

94.5

47

71

VGG16

52

357

39

80

0.57

39.4

46.6

90.2

48.5

77.65

SA + InceptionV3

125

389

7

7

0.947

94.7

94.7

98.2

94.7

98

InceptionV3

126

391

5

6

0.96

95.5

95.8

98.7

96.2

98.76

SA + ResNet101

122

387

9

10

0.9313

92.42

97.7

92.8

92.4

98.62

ResNet101

113

377

19

19

0.8561

85.61

95.2

85.6

85.6

94.67

SA +VGG19

24

363

33

108

0.4211

18.18

91.7

25.4

27.3

51.86

VGG19

40

377

19

92

0.678

30.30

95.2

41.9

53

80.39

SA + ResNet18

128

392

4

4

0.9697

96.97

97

99

96.7

98.41

ResNet18

125

389

7

7

0.947

94.7

94.7

98.2

94.7

98.63