Table 2 Computational cost of a generic nature-inspired algorithm for antennas of Fig. 1.

From: On nature-inspired design optimization of antenna structures using variable-resolution EM models

EM model setup

Computational cost of the optimization process (N = 10, kmax = 100)

Antenna of Fig. 1a (broadband monopole)

Antenna of Fig. 1b (dual-band dipole)

Execution time (h)

Savings w.r.t. high-fidelity-based algorithm (%)

Execution time (h)

Savings w.r.t. high-fidelity-based algorithm (%)

High-fidelity (L = Lmax)

132.1

25.6

Variable resolution (cf. (4)) \(L(k) = L_{\min } + (L_{\max } - L_{\min } )\left[ {\frac{k}{{k_{\max } }}} \right]^{p}\)

p = 0.5

82.2

37.7

18.0

29.6

p = 1.0

57.0

56.8

14.5

43.5

p = 2.0

37.7

71.5

11.4

55.4

p = 3.0

29.6

77.6

10.0

60.8