Table 3 Pure strategy points and their corresponding eigenvalues.

From: Research on the evolution of express packaging recycling strategy considering virtual incentives and heterogeneous subsidies

Equilibrium

The eigenvalues corresponding to the equilibrium point

\(R_{1} (0,0,0)\)

\(G_{1} - C_{1} + \mu B_{2} - G_{2} + C_{2}\), \(S - L_{1}\),\(B_{1} - W_{1} - B_{2} + W_{2} + \mu B_{2}\)

\(R_{2} (0,0,1)\)

\(G_{1} - C_{1} - F - \theta B_{1} - G_{2} + C_{2}\), \(S - L_{1} - \kappa W_{1}\),\(- (B_{1} - W_{1} - B_{2} + W_{2} + \mu B_{2} )\)

\(R_{3} (0,1,0)\)

\(G_{1} - C_{1} - D + \mu B_{2} - G_{2} + C_{2}\), \(- (S - L_{1} )\),\(B_{1} + \beta S - W_{1} - B_{2} + W_{2} + \mu B_{2}\)

\(R_{4} (1,0,0)\)

\(G_{1} - C_{1} - D - F - \theta B_{1} - G_{2} + C_{2}\), \(- (S - L_{1} - \kappa W_{1} )\),\(- (B_{1} + \beta S - W_{1} - B_{2} + W_{2} + \mu B_{2} )\)

\(R_{5} (1,1,0)\)

\(- (G_{1} - C_{1} + \mu B_{2} - G_{2} + C_{2} )\), \(S - L_{1} + D\),\(B_{1} + [F - (\mu - \theta )B_{1} ] - W_{1} - B_{2} + W_{2} + \mu B_{2}\)

\(R_{6} (1,0,1)\)

\(- (G_{1} - C_{1} - F - \theta B_{1} - G_{2} + C_{2} )\), \(S - L_{1} + D - \kappa W_{1}\),\(- \{ B_{1} + [F - (\mu - \theta )B_{1} ] - W_{1} - B_{2} + W_{2} + \mu B_{2} \}\)

\(R_{7} (0,1,1)\)

\(- (G_{1} - C_{1} - D + \mu B_{2} - G_{2} + C_{2} )\), \(- (S - L_{1} + D)\),\(B_{1} + [F - (\mu - \theta )B_{1} ]{ + }\beta S - W_{1} - B_{2} + W_{2} + \mu B_{2}\)

\(R_{8} (1,1,1)\)

\(- (G_{1} - C_{1} - D - F - \theta B_{1} - G_{2} + C_{2} )\), \(- (S - L_{1} + D - \kappa W_{1} )\),\(- \{ B_{1} + [F - (\mu - \theta )B_{1} ]+ \beta S - W_{1} - B_{2} + W_{2} + \mu B_{2} \}\)