Table 6 Comparison with some of the papers that used machine learning approaches for rTMS treatment outcome prediction against methods and results. R and NR stand for responders and non-responders.

From: A convolutional recurrent neural network with attention for response prediction to repetitive transcranial magnetic stimulation in major depressive disorder

study

Number of subjects

Methods

Performance

Erguzel10—2015

147 MDD (90 R/57 NR)

Cordance feature + ANN

ACC = 89.09%

Bailey12—2018

39 MDD (10 R/29 NR)

Working memory-related fronto-midline theta power and Theta connectivity + SVM

ACC = 91%

Erguzel43—2016

147 MDD (90 R/57 NR)

Cordance + ANN, SVM, Decision Tree

AUC = 0.92

Shalbaf6—2018

51 MDD (30 R/21 NR)

Permutation entropy + ANOVA

AUC = 0.8

Hasanzadeh9—2019

46 MDD (23 R/23 NR)

Correlation dimension, fractal dimension, power and Bispectrum + KNN

ACC = 93.5%

Corlier13—2019

109 MDD (45% R/55% NR)

Functional connectivity + ElasticNet

AUC = 0.91

Bailey8—2021

193 MDD (128 R/65 NR)

Theta connectivity + ANOVA

No statistically difference

Our work

46 MDD (23 R/23 NR)

CWT images of frontal electrodes + TL-BLSTM-attention

ACC = 97.1%