Table 5 Creep compliance parameters of each creep model.

From: Fuzzy random evaluation of creep model of frozen soft soil in metro tunnel construction using artificial ground freezing technique

Creep damage model

Creep compliance parameter

Kelvin

\(q_{0} = E_{1} ,q_{1} = \eta\)

Generalised Kelvin

\(p_{1} = \frac{\eta }{{E_{1} + E_{2} }},q_{0} = \frac{{E_{1} E_{2} }}{{E_{1} + E_{2} }},q_{1} = \frac{{E_{1} }}{{E_{1} + E_{2} }}\eta\)

Jeffreys

\(p_{1} = \frac{{\eta_{2} }}{{E_{1} }},q_{1} = \eta_{1} + \eta_{2} ,q_{2} = \frac{{\eta_{1} \eta_{2} }}{{E_{1} }}\)

Burgers

\(p_{1} = \frac{{\eta_{1} }}{{E_{1} }} + \frac{{\eta_{1} + \eta_{2} }}{{E_{2} }},p_{2} = \frac{{E_{1} + E_{2} }}{{E_{1} E_{2} }},q_{1} = \eta_{1} ,q_{2} = \frac{{\eta_{1} \eta_{2} }}{{E_{2} }}\)

Nishihara (σo < σs)

\(p_{1} = \frac{\eta }{{E_{1} + E_{2} }},q_{0} = \frac{{E_{1} E_{2} }}{{E_{1} + E_{2} }},q_{1} = \frac{{E_{1} }}{{E_{1} + E_{2} }}\eta\)

Nishihara (σo > σs)

\(p_{1} = \frac{{\eta_{2} }}{{E_{1} }} + \frac{{\eta_{1} }}{{E_{2} }} + \frac{{\eta_{2} }}{{E_{2} }},p_{2} = \frac{{\eta_{1} \eta_{2} }}{{E_{1} E_{2} }},q_{1} = \eta_{2} ,q_{2} = \frac{{\eta_{1} \eta_{2} }}{{E_{1} }}\)