Table 5 Creep compliance parameters of each creep model.
Creep damage model | Creep compliance parameter |
|---|---|
Kelvin | \(q_{0} = E_{1} ,q_{1} = \eta\) |
Generalised Kelvin | \(p_{1} = \frac{\eta }{{E_{1} + E_{2} }},q_{0} = \frac{{E_{1} E_{2} }}{{E_{1} + E_{2} }},q_{1} = \frac{{E_{1} }}{{E_{1} + E_{2} }}\eta\) |
Jeffreys | \(p_{1} = \frac{{\eta_{2} }}{{E_{1} }},q_{1} = \eta_{1} + \eta_{2} ,q_{2} = \frac{{\eta_{1} \eta_{2} }}{{E_{1} }}\) |
Burgers | \(p_{1} = \frac{{\eta_{1} }}{{E_{1} }} + \frac{{\eta_{1} + \eta_{2} }}{{E_{2} }},p_{2} = \frac{{E_{1} + E_{2} }}{{E_{1} E_{2} }},q_{1} = \eta_{1} ,q_{2} = \frac{{\eta_{1} \eta_{2} }}{{E_{2} }}\) |
Nishihara (σo < σs) | \(p_{1} = \frac{\eta }{{E_{1} + E_{2} }},q_{0} = \frac{{E_{1} E_{2} }}{{E_{1} + E_{2} }},q_{1} = \frac{{E_{1} }}{{E_{1} + E_{2} }}\eta\) |
Nishihara (σo > σs) | \(p_{1} = \frac{{\eta_{2} }}{{E_{1} }} + \frac{{\eta_{1} }}{{E_{2} }} + \frac{{\eta_{2} }}{{E_{2} }},p_{2} = \frac{{\eta_{1} \eta_{2} }}{{E_{1} E_{2} }},q_{1} = \eta_{2} ,q_{2} = \frac{{\eta_{1} \eta_{2} }}{{E_{1} }}\) |