Table 2 Population characteristics.

From: Predicting outcomes of acute kidney injury in critically ill patients using machine learning

Characteristics

N=101

Demographics

Age (years), median (IQR)

74 (30 - 92)

Female sex, %

36.6%

Body weight, kg

83 (45 - 150)

Body mass index, \(kg/m^2\)

27.7 (17 - 57)

Scores

APACHE II

25.9 (11 - 43)

SOFA

9.2 (4.6 - 20.6)

SAPS II

55.2 ( 21.9 - 102.5)

ICU types

MICU, %

80%

SICU, %

17%

Trauma, %

2%

Comorbidities

Arterial hypertension, %

48%

Chronic Liver Failure

12%

Diabetes mellitus

22%

Chronic obstructive pulmonary disease

22%

Oncological history

22%

Suspected infection on admission

57%

ICU interventions

Invasive ventilation days, median (IQR)

0.9 (0 - 20)

Fluid balance, median (IQR)

1032 (182 - 3470)

Transfusion, %

2.2%

Antibiotics, %

88%

Outcomes

ICU days, median (IQR)

14.5 (1 - 160)

Hospital days, median (IQR)

26 (3 - 186)

CKD (after ICU discharge), %

49%

Mortality (hospital and follow-up), %

43%

Laboratory results

Cystatin C (mg/L) at ICU admission

1.94 (0.67 - 8.06)

Creatinine (mg/dL) at ICU admission

1.98 (0.31 - 12.64)