Table 2 Deep learning model architecture and configuration.

From: Application of a generative adversarial network for multi-featured fermentation data synthesis and artificial neural network (ANN) modeling of bitter gourd–grape beverage production

Model

Parameters

Layer 1

Dense [No. of nodes = 11, Activation = softmax, Kernel initializer = he_uniform, Kernel regularizer = l1(0.1), Bias regularizer = l1(0.1), Activity regularizer = l2(0.1)]

Layer 2

Batch Normalization

Layer 3

Dropout = 0.6

Layer 4

Dense [No. of nodes = 6, Activation function = softmax, Kernel initializer = he_uniform, Kernel regularizer = l1(0.1), Bias regularizer = l1(0.1), Activity regularizer = l2(0.1)]

Layer 5

Batch Normalization

Layer 6

Dropout = 0.3

Layer 7

Dense [Output dimensions = 1, Activation function = relu]

Model compilation

Loss function = mean squared error

Optimizer = Adam [learning rate = 1 × 10–2, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1 × 10–7, amsgrad = False]

Metrics = mean squared error