Table 1 The critical values of the LGI in the energy constraint (i.e., \(\theta =\frac{\pi }{2}\), \(\tau =\frac{\pi }{4\omega }\) and \(\phi =\frac{\pi }{4}\)) for the dynamics under driven (with the coarsening measurement reference, the coarsening final measurement resolution and the coarsening time reference), the dynamics under dissipation and dephasing (with the coarsening measurement reference and the coarsening final measurement resolution), for \(g/\gamma =0, 0.05\omega , 0.1\omega , 0.2\omega , 0.3\omega , 0.4\omega , 0.5\omega , 0.6\omega , 0.7\omega , 0.8\omega ,\) \( 0.9\omega , \omega \), respectively.

From: Quantum violation of LGI under an energy constraint for different scenarios systems

\(g/\gamma \)

Dynamics with driven

Dynamics under dissipation

Dynamics under dephasing

\(\Delta _{critical}\)

   \(\delta _{critical}\)

\(\Delta '_{critical}\)

\(\Delta _{critical}\)

   \(\delta _{critical}\)

\(\Delta _{critical}\)

   \(\delta _{critical}\)

0

0.4162

0.0795

0.8325

0.4162

0.0795

0.4162

0.0795

\(0.05\omega \)

0.4156

0.0793

0.8321

0.3919

0.0712

0.3078

0.0451

\(0.1\omega \)

0.4136

0.0786

0.8308

0.366

0.0627

0.1272

0.008

\(0.2\omega \)

0.4056

0.0758

0.824

0.3078

0.0451

No

No

\(0.3\omega \)

0.3919

0.0712

0.8069

0.2355

0.0269

No

No

\(0.4\omega \)

0.3719

0.0645

0.7647

0.1272

0.008

No

No

\(0.5\omega \)

0.3444

0.0559

0.6605

No

No

No

No

\(0.6\omega \)

0.3074

0.045

0.4809

No

No

No

No

\(0.7\omega \)

0.2569

0.0319

0.3278

No

No

No

No

\(0.8\omega \)

0.1822

0.0163

0.1988

No

No

No

No

\(0.9\omega \)

No

No

No

No

No

No

No

\(\omega \)

No

No

No

No

No

No

No

  1. It is noted that the “No” in the table below represents that we cannot find any parameter for \(\Delta \in (0, 1)\) or \(\delta \in (0, 0.5)\) to make the LGI violated. In other words, no matter what values of \(\Delta \) (\(\Delta \in (0, 1)\)) and \(\delta \) (\(\delta \in (0, 0.5)\)) take, the LGI is not violated.