Table 1 Mechanical properties and boundary conditions of FGM cylinder38.

From: A nontraditional method for reducing thermoelastic stresses of variable thickness rotating discs

Mechanical property

Boundary conditions

Elastic modulus (\(\mathrm{GPa}\))

Poisson’s ratio

\({E}_{i}=200\)

\({v}_{i}=0.28\)

\({\sigma }_{rr}\left({r}_{i},\theta \right)={P}_{0}\mathrm{cos}\left(2\theta \right)\)

\({\sigma }_{rr}\left({r}_{o},\theta \right)=0\)

\({E}_{o}={E}_{i}/3\)

\({v}_{o}=0.28\)

\({\sigma }_{r\theta }\left({r}_{i},\theta \right)=0\)

\({\sigma }_{r\theta }\left({r}_{o},\theta \right)=0\)

  1. † Eq. (9) is used to describe the variation of \(E\) and \(v\) with \({j}=1\).