Table 3 Performance of CNN combined with different classification models for the diagnosis of H. pylori infection by single endoscopic image from gastric body.
Method | Accuracy | Sensitivity | Specificity | PPV | NPV | AUC |
|---|---|---|---|---|---|---|
CNN | 0.86 | 0.96 | 0.69 | 0.85 | 0.89 | 0.82 |
CNN-KNN | 0.85 | 0.91 | 0.73 | 0.86 | 0.82 | 0.82 |
CNN-SVM | 0.84 | 0.91 | 0.70 | 0.85 | 0.81 | 0.81 |
CNN-RF | 0.87 | 0.93 | 0.77 | 0.88 | 0.85 | 0.85 |
CNN-GBDT | 0.82 | 0.88 | 0.72 | 0.85 | 0.76a | 0.80 |
CNN-AdaBoost | 0.87 | 0.92 | 0.77 | 0.88 | 0.84 | 0.84 |
CNN-XGBoost | 0.88 | 0.93 | 0.79 | 0.89 | 0.86 | 0.86 |
CNN-LGBoost | 0.88 | 0.92 | 0.79 | 0.89 | 0.85 | 0.86 |
CNN-CatBoost | 0.88 | 0.93 | 0.80 | 0.90 | 0.86 | 0.87 |