Table 4 Performance of scSE combined with different classification models for the diagnosis of H. pylori infection by single endoscopic image from gastric body.
Method | Accuracy | Sensitivity | Specificity | PPV | NPV | AUC |
|---|---|---|---|---|---|---|
scSE | 0.88 | 0.93 | 0.80 | 0.89 | 0.86 | 0.86 |
scSE-KNN | 0.89 | 0.93 | 0.81 | 0.90 | 0.87 | 0.87 |
scSE-SVM | 0.83 | 0.90 | 0.71 | 0.85 | 0.80 | 0.81 |
scSE-RF | 0.88 | 0.94 | 0.76 | 0.88 | 0.88 | 0.85 |
scSE-GBDT | 0.84 | 0.91 | 0.72 | 0.86 | 0.81 | 0.82 |
scSE-AdaBoost | 0.87 | 0.90 | 0.81 | 0.90 | 0.82 | 0.86 |
scSE-XGBoost | 0.89 | 0.93 | 0.80 | 0.90 | 0.86 | 0.87 |
scSE-LGBoost | 0.90 | 0.93 | 0.83 | 0.91 | 0.87 | 0.88 |
scSE-CatBoost | 0.88 | 0.93 | 0.80 | 0.89 | 0.86 | 0.86 |