Table 5 Illustrates the performance of the proposed model compared to existing pre-trained state-of-the-art architectures.
Models | Accuracy | Sensitivity | Specificity | AUC-ROC | F1-score |
|---|---|---|---|---|---|
VGG16 | 0.9603 | 0.9567 | 0.9640 | 0.9920 | 0.9560 |
VGG19 | 0.9597 | 0.9560 | 0.9632 | 0.9910 | 0.9550 |
Inception V3 | 0.9280 | 0.9250 | 0.9302 | 0.9760 | 0.9251 |
ResNet50 V2 | 0.9390 | 0.9356 | 0.9408 | 0.9410 | 0.9820 |
Xception | 0.9470 | 0.9420 | 0.9480 | 0.9792 | 0.9439 |
DenseNet121 | 0.9562 | 0.9482 | 0.9650 | 0.9901 | 0.9480 |
MobileNetV2 | 0.9483 | 0.9420 | 0.9552 | 0.9880 | 0.9478 |
Capsule net | 0.9518 | 0.9500 | 0.9514 | 0.9900 | 0.9498 |
Proposed | 0.9935 | 0.9957 | 0.9912 | 0.9973 | 0.9936 |