Table 3 Comparison of base classifiers; LR, SVM (with RBF kernel), RF, and their ensembles from the extracted feature from GCN last layer using METABRIC dataset.

From: Breast cancer survival prognosis using the graph convolutional network with Choquet fuzzy integral

Metrics

Acc

Mcc

Pre

Sn

Sp

Bal_Acc

F1-Measure

GCN-RF

0.797

0.436

0.609

0.530

0.885

0.707

0.563

GCN-RBF

0.778

0.490

0.539

0.751

0.774

0.761

0.627

GCN-LR

0.783

0.492

0.547

0.741

0.777

0.759

0.628

GCN-Majority Voting

0.786

0.490

0.552

0.725

0.806

0.765

0.626

ChoqFuzGCN

0.820

0.528

0.630

0.666

0.871

0.769

0.647

  1. Significant values are in bold.